Fundamentals of Electricity

- Electrical charge can be positive or negative.
 - Opposite charges attract each other
- Electrical current is the flow of *electrons*.
 - Electrons are negatively-charged atomic particles, usually surrounding an atom's positively-charged nucleus of protons (positive) and neutrons (neutral no charge)
 - Electrons move in response to an *electromotive force* and can move independently of atoms
- Current: the movement of electrons, measured in *amperes* (A) by an *ammeter*, and represented by *I* in formulas
- Voltage: the amount of electromotive force (emf), also called *electrical potential*, measured in *volts* (V) by a *voltmeter*, represented by *E* or *V* in formulas
- Resistance: the opposition to the movement of electrons, measured in *ohms* (Ω) by an *ohmmeter* and represented by R in formulas.
- Resistance is like friction and turns electrical energy into heat when current flows.
- *Conductors* permit current flow (low resistance) and *insulators* block current flow (high resistance).

Current that flows in only one direction, is called direct current (dc).

Batteries are a common source of dc.

Current that flows in one direction then in the opposite direction is called alternating current (ac).

– Household current is ac

AC current reverses direction on a regular basis

Each process of reversing is a cycle.

The number of cycles per second is frequency, measured in hertz (Hz).

1 Hz = 1 cycle per second

- For current to flow, there must be a path from one side of the energy source to the other side of the source this path is called a *circuit*.
 - There must be a pipe (conductive path) through which the water (current) can flow.
- There are two types of electric circuits.
- Series circuits provide one and only one path for current flow.
- Parallel circuits provide multiple paths for current flow.

- Ohm's Law
 - E represents voltage Units volts (V)
- I represents current
 - Units amperes (A)
- R represents resistance
 - Units ohms (Ω)

R = E / I

- I = E / R
- E = I x R

- Any time energy is expended, power is consumed.
- Electrons moving through resistance expend electrical energy and consume power.
- Power is the rate at which energy is consumed.
- Power is measured in units of watts (W).

Electrical Units and Their Namesakes				
Unit	Measures	Named for		
Ampere	Current	Andree Marie Ampere (1775 – 1836)		
Coulomb		Charles Augustin Coulomb (1736 - 1806)		
Farad	and the second	Michael Faraday (1791 – 1867)		
Henry	Inductance	Joseph Henry (1797 – 1878)		
Hertz	Frequency	Heinrich Hertz (1857 – 1894)		
Ohm	Resistance	George Simon Ohm (1787 – 1854)		
Watt	Power	James Watt (1736 – 1819)		
Volt	Voltage	Alessandro Giuseppe Antonio Anastasio		
		Volta (1745 – 1827)		

Table 2-1

International System of Units (SI)—Metric Units

Prefix	Symbol	Multiplication Factor
Tera	Т	$10^{12} = 1,000,000,000,000$
Giga	G	$10^9 = 1,000,000,000$
Mega	Μ	$10^6 = 1,000,000$
Kilo	k	$10^3 = 1000$
Hecto	h	$10^2 = 100$
Deca	da	10 ¹ = 10
Deci	d	10 ⁻¹ = 0.1
Centi	с	$10^{-2} = 0.01$
Milli	m	10 ⁻³ = 0.001
Micro	μ	$10^{-6} = 0.000001$
Nano	n	10 ⁻⁹ = 0.000000001
Pico	р	$10^{-12} = 0.000000000001$