- Electrical charge can be positive or negative.
- Opposite charges attract each other
- Electrical current is the flow of electrons.
- Electrons are negatively-charged atomic particles, usually surrounding an atom's positively-charged nucleus of protons (positive) and neutrons (neutral - no charge)
- Electrons move in response to an electromotive force and can move independently of atoms
- Current: the movement of electrons, measured in amperes (A) by an ammeter, and represented by I in formulas
- Voltage: the amount of electromotive force (emf), also called electrical potential, measured in volts (V) by a voltmeter, represented by E or V in formulas
- Resistance: the opposition to the movement of electrons, measured in ohms (Ω) by an ohmmeter and represented by R in formulas.
- Resistance is like friction and turns electrical energy into heat when current flows.
- Conductors permit current flow (low resistance) and insulators block current flow (high resistance).

Current that flows in only one direction, is called direct current (dc).
Batteries are a common source of dc.
Current that flows in one direction then in the opposite direction is called alternating current (ac).

- Household current is ac

AC current reverses direction on a regular basis
Each process of reversing is a cycle.
The number of cycles per second is frequency, measured in hertz (Hz).
$1 \mathrm{~Hz}=1$ cycle per second

- For current to flow, there must be a path from one side of the energy source to the other side of the source - this path is called a circuit.
- There must be a pipe (conductive path) through which the water (current) can flow.
- There are two types of electric circuits.
- Series circuits provide one and only one path for current flow.
- Parallel circuits provide multiple paths for current flow.
- Ohm's Law
- E represents voltage Units - volts (V)
- I represents current
- Units - amperes (A)
- R represents resistance
- Units - ohms (Ω)

$$
R=E / I
$$

$$
I=E / R
$$

$$
E=I \times R
$$

- Any time energy is expended, power is consumed.
- Electrons moving through resistance expend electrical energy and consume power.
- Power is the rate at which energy is consumed.
- Power is measured in units of watts (W).

$$
\begin{aligned}
& P=I \times E \\
& I=P / E \\
& E=P / R
\end{aligned}
$$

Electrical Units and Their Namesakes		
Unit	Measures	Named for
Ampere	Current	Andree Marie Ampere (1775-1836)
Coulomb	Charge	Charles Augustin Coulomb (1736-1806)
Farad	Capacitance	Michael Faraday (1791-1867)
Henry	Inductance	Joseph Henry (1797-1878)
Hertz	Frequency	Heinrich Hertz (1857-1894)
Ohm	Resistance	George Simon Ohm (1787-1854)
Watt	Power	James Watt (1736-1819)
Volt	Voltage	Alessandro Giuseppe Antonio Anastasio
		Volta (1745-1827)

Table 2-1
International System of Units (SI)—Metric Units

Prefix	Symbol	Multiplication Factor
Tera	T	$10^{12}=1,000,000,000,000$
Giga	G	$10^{9}=1,000,000,000$
Mega	M	$10^{6}=1,000,000$
Kilo	k	$10^{3}=1000$
Hecto	h	$10^{2}=100$
Deca	da	$10^{1}=10$
Deci	d	$10^{-1}=0.1$
Centi	c	$10^{-2}=0.01$
Milli	m	$10^{-3}=0.001$
Micro	μ	$10^{-6}=0.000001$
Nano	n	$10^{-9}=0.000000001$
Pico	p	$10^{-12}=0.000000000001$

